Production of reactive oxygen intermediates (O(2)(.-), H(2)O(2), and (.)OH) by maize roots and their role in wall loosening and elongation growth.

نویسندگان

  • Anja Liszkay
  • Esther van der Zalm
  • Peter Schopfer
چکیده

Cell extension in the growing zone of plant roots typically takes place with a maximum local growth rate of 50% length increase per hour. The biochemical mechanism of this dramatic growth process is still poorly understood. Here we test the hypothesis that the wall-loosening reaction controlling root elongation is effected by the production of reactive oxygen intermediates, initiated by a NAD(P)H oxidase-catalyzed formation of superoxide radicals (O(2)(.-)) at the plasma membrane and culminating in the generation of polysaccharide-cleaving hydroxyl radicals ((.)OH) by cell wall peroxidase. The following results were obtained using primary roots of maize (Zea mays) seedlings as experimental material. (1) Production of O(2)(.-), H(2)O(2), and (.)OH can be demonstrated in the growing zone using specific histochemical assays and electron paramagnetic resonance spectroscopy. (2) Auxin-induced inhibition of growth is accompanied by a reduction of O(2)(.-) production. (3) Experimental generation of (.)OH in the cell walls with the Fenton reaction causes wall loosening (cell wall creep), specifically in the growing zone. Alternatively, wall loosening can be induced by (.)OH produced by endogenous cell wall peroxidase in the presence of NADH and H(2)O(2). (4) Inhibition of endogenous (.)OH formation by O(2)(.-) or (.)OH scavengers, or inhibitors of NAD(P)H oxidase or peroxidase activity, suppress elongation growth. These results show that juvenile root cells transiently express the ability to generate (.)OH, and to respond to (.)OH by wall loosening, in passing through the growing zone. Moreover, inhibitor studies indicate that (.)OH formation is essential for normal root growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension.

The production and role of reactive oxygen species (ROS) in the expanding zone of maize (Zea mays) leaf blades were investigated. ROS release along the leaf blade was evaluated by embedding intact seedlings in 2',7'-dichlorofluorescein-containing agar and examining the distribution of 2',7'-dichlorofluorescein fluorescence along leaf 4, which was exposed by removing the outer leaves before embe...

متن کامل

In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth.

Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical ((*)OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that (*)OH is gener...

متن کامل

Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress.

The possible involvement of apoplastic reactive oxygen species produced by the oxidation of free polyamines in the leaf growth of salinized maize has been studied here. Salt treatment increased the apoplastic spermine and spermidine levels, mainly in the leaf blade elongation zone. The total activity of polyamine oxidase was up to 20-fold higher than that of the copper-containing amine oxidase....

متن کامل

Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit.

Previous work on the adaptation of maize (Zea mays) primary roots to water deficit showed that cell elongation is maintained preferentially toward the apex, and that this response involves modification of cell wall extension properties. To gain a comprehensive understanding of how cell wall protein (CWP) composition changes in association with the differential growth responses to water deficit ...

متن کامل

Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth.

Hydroxyl radicals (OH) are capable of unspecifically cleaving cell-wall polysaccharides in a site-specific reaction. I investigated the hypothesis that cell-wall loosening underlying the elongation growth of plant organs is controlled by apoplastically produced OH attacking load-bearing cell-wall matrix polymers. Isolated cell walls (operationally, frozen/thawed, abraded segments from coleoptil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 136 2  شماره 

صفحات  -

تاریخ انتشار 2004